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� No noncarcinogenic or carcinogenic
risk resulted from inhalation of
metals in PM1.

� Many metals had better simulation
effects when atmospheric pollutants
as inputs.

� BP-ANN and SVM models both per-
formed better for Pb, Tl and Zn than
for Ti and V.

� Predicted metal contents were lower
during COVID-19 outbreak than in
2018 or 2019.
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The aim of this study was to establish a method for predicting heavy metal concentrations in PM1

(aerosol particles with an aerodynamic diameter � 1.0 mm) based on back propagation artificial neural
network (BP-ANN) and support vector machine (SVM) methods. The annual average PM1 concentration
was 26.31 mg/m3 (range: 7.00e73.40 mg/m3). The concentrations of most metals were higher in winter
and lower in autumn and summer. Mn and Ni had the highest noncarcinogenic risk, and Cr the highest
carcinogenic risk. The hazard index was below safe limit, and the integrated carcinogenic risk was less
than precautionary value. There were no obvious differences in the simulation performances of BP-ANN
and SVM models. However, in both models many elements had better simulation effects when input
variables were atmospheric pollutants (SO2, NO2, CO, O3 and PM2.5) rather than PM1 and meteorological
factors (temperature, relative humidity, atmospheric pressure and wind speed). Models performed better
for Pb, Tl and Zn, as evidenced by training R and test R values consistently >0.85, whereas their per-
formances for Ti and V were relatively poor. Predicted results by the fully trained models showed at-
mospheric heavy metal pollution was heavier in December and January and lighter in August and July of
2019. For the period covering the COVID-19 outbreak in China, from January to March 2020, most of the
predicted element concentrations were lower than in 2018 and 2019, and the concentrations of nearly all
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metals were lowest during the nationwide implementation of countermeasures taken against the
pandemic.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Urban air pollution is one of the most serious environmental
issues confronting humankind in the face of rapid economic
development (Fuertes et al., 2020). In 2016, particulate matter (PM)
in ambient air was classified as a group 1 contaminant by theWorld
Health Organization (WHO) and the International Agency for
Research on Cancer (IARC) (Feng et al., 2016). The actual health
effects of PM depend on its chemical composition and the ability of
the respiratory tract to remove inhaled PM, which depends in turn
on its size (Fang et al., 2017; Kelly and Fussell, 2012). Compared
with fine particulate matter (PM2.5, particles having an aero-
dynamic diameter � 2.5 mm), submicronic particulate matter (PM1,
particles with an aerodynamic diameter < 1 mm) may travel deeper
into the lungs, reaching lower bronchial and alveolar regions
(Oberd€orster et al., 2005). Moreover, the greater surface area per
mass of PM1 allows it to readily carry potentially toxic compounds,
including those of anthropogenic origin, thus posing a serious
health risk to exposed populations (Caggiano et al., 2019). However,
despite its greater health hazard, PM1 is not considered by air
quality standards and therefore not measured routinely. Conse-
quently, while detailed information on potentially toxic constitu-
ents in PM1, such as heavy metals, is vital to assess its adverse
health effects, the available data are scarce (Caggiano et al., 2010,
2019; Sarti et al., 2015).

The traditional geochemical methods used in heavy metal de-
terminations are relatively complex, time-consuming and expen-
sive such that simpler, more cost-efficient approaches are needed.
In recent years, machine learning models have been applied to
predict the concentrations of airborne-pollutants such as SO2 (Li
et al., 2020), NO2 (Yeganeh et al., 2018), O3 (Lu and Wang, 2014),
CO (Yeganeh et al., 2012), PM2.5 (Niu et al., 2016), airborne heavy
metals (Li et al., 2017) and atmospheric nitrogen (Palani et al., 2011)
as well as the air quality index (Wu and Lin, 2019), because the
necessary input variables are more easily accessed, in contrast to
numerical forecast models (Li et al., 2017). However, few studies
have focused on the potential use of easily obtained atmospheric
pollutants and meteorological factors to characterize atmospheric
heavy metals statistically (Leng et al., 2017). Among the machine
learning models, artificial neural network (ANN) is an adaptive
system that uses neuron nodes to associate memory, nonlinear
mapping, classified recognition and optimization design. One of the
most widely used ANN methods is back-propagation (BP), and the
flexibility of BP-ANN has been exploited to identify complex
nonlinear relationships in observation-based data (Luna et al.,
2014). However, this approach also suffers from problems
inherent to its architecture, such as overfitting the training data, a
lack of network optimization and poor generalizability (Ye et al.,
2020). The support vector machine (SVM) algorithm developed
by the machine learning community (Cortes and Vapnik, 1995)
achieves global optimization and avoids the overfitting that limits
the ANN framework (Taghvaei et al., 2016). Nonetheless, to date,
neither of these statistical models has been applied to predict at-
mospheric heavy metals in submicronic particles.

Therefore, the main objectives of this study were: (1) to inves-
tigate the pollution levels and health risk of heavy metals in PM1

fromNanjing, China; (2) to developmethods of simulating particle-
bound elements using BP-ANN and SVM, with atmospheric pol-
lutants and meteorological factors as input variables and (3) to
predict the temporal variation of heavy metals in PM1 by using
appropriate fully trained models.

2. Materials and methods

2.1. Sample collection

Nanjing is a megacity with a population of more than 8.1
million. It is a comprehensive industrial production center and the
main transportation hub in southeast China. There are five main
industries in Nanjing, including electronics, petrochemical, steel,
automobile and electric power. The climate is north subtropical
monsoon; the average annual temperature is 16 �C and the average
annual precipitation 1106 mm. The sampling site for this study was
Nanjing University (32�07008.5900 N, 118�56050.6100 E) (Leng et al.,
2017; Li et al., 2017), located near the northern industrial zones
and thus close to several major industrial point sources. The uni-
versity’s Xianlin Campus is surrounded by residential neighbor-
hoods but is located< 6.0 km from the Nanjing Jinling
Petrochemical Engineering Company. The campus is ~0.2 km away
from the freeway where the average daily traffic volumes exceed
5000.

PM1 samples were collected on quartz microfiber filters using a
low-volume PM1 sampler (model 600/DCDPM0101K, AMS Tech-
nologies Co., Ltd., Italy) at a flow rate of 38 L/min. In order to ensure
the sampler works normally and the PM mass is enough for anal-
ysis, continuous sampling was conducted for a total of 72 h during
winter, 24 h per day; 96 h during spring, 24 h per day; and 120 h
during summer and autumn, 24 h per day, respectively. PM1 sam-
ples were collected over a 1-year period, from December 6, 2017 to
February 6, 2018 (winter), from March 12 to May 25, 2018 (spring),
from June 5 to August 29, 2018 (summer) and from September 1 to
November 24, 2018 (autumn). To ensure that the samples were
representative, sampling was not conducted during the wet and
windy weather that can occur in the study area. A total of 57 p.m.1
samples were collected. Each sample filter was conditioned for 48 h
in a desiccator at 25 �C and 40% relative humidity before and after
sampling, then weighed to determine the mass of PM1. Hourly at-
mospheric pollutant concentrations (NO2: 17i, Themo-Fisher, USA;
SO2: 450i, Themo-Fisher, USA; O3: 49i, Themo-Fisher, USA; PM2.5:
5014i, Themo-Fisher, USA) and meteorological data (wind speed:
03002-L20, R.M Young, USA; temperature and relative humidity:
HMP155A, Finland; atmospheric pressure: CS106, USA) were
recorded simultaneously at an automatic air quality monitoring
station located about 2 m from the sampling site.

2.2. Heavy metal analysis

The PM samples were digested with a mixture of HNO3, HCl and
HF to release the metal elements. Zn concentrations were
measured using inductively coupled plasma atomic emission
spectrometry (PerkinElmer SCIEX, Optima 5300 DV, Norway), with
a minimum detection limit of 0.001 mg/L. As, Cd, Co, Cr, Cu, Mn, Ni,
Pb, Ti, Tl and V concentrations were measured using ICP-mass
spectrometry (ICP-MS, PerkinElmer SCIEX, Elan 9000, Norway);



Table 1
Method and input variables of the four developed models.

Method Input variables

Model I BP-ANN Atmospheric pollutants
Model II BP-ANN PM1 þ Meteorological factors
Model III SVM Atmospheric pollutants
Model IV SVM PM1 þ Meteorological factors

Fig. 1. PM1 concentrations during the sampling periods.
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the minimum detection limits for most of those elements in solu-
tionwas 0.01 mg/L. ICP-MSwas optimized using solutions of Mg, Rh,
In, Ba, Ce, Pb and U, each at a concentration of 10 mg/L and prepared
in 2% HNO3. The internal standard in the element analyses was
115In, at a concentration of 20 mg/L and prepared in 2% HNO3. At
least four blank filters were analyzed simultaneously, and the
concentration of each element then corrected by subtracting the
average blank concentration. Quality control was ensured by
analyzing NIST SRM 1648a (urban particulate matter). The recovery
rates of the studied elements were between 86% and 105%.

2.3. Health risk assessments

Health risk assessments are used to estimate the occurrence of
adverse health effects in children and adults that result from the
direct inhalation of atmospheric particulates (US EPA, 1989, 2009).
The risk assessment model mainly involves exposure assessment
and risk characterization. In the latter, the reference concentration
(RfC) and inhalation unit risk (IUR) are used to characterize the
risks posed by elements with noncarcinogenic (i.e., As, Cd, Cr, Mn,
Ni, Tl and V) and carcinogenic (i.e., As, Cd, Cr(VI), Ni and Pb) effects,
respectively. The calculations of the inhalation exposure concen-
tration (EC), the hazard quotient (HQ) of the noncarcinogenic and
carcinogenic risks (CR) are shown in the Supporting Information
(SI).

2.4. Simulation models

In this study, the machine learning models BP-ANN and SVM
were used to simulate the concentrations of particle-bound heavy
metals. Atmospheric pollutant concentrations (SO2, NO2, CO, O3
and PM2.5), meteorological factors (temperature, relative humidity,
atmospheric pressure and wind speed) and the PM1 concentration
served as input variables. A total of four models were developed
according to the input variables and methods (Table 1). All data
were randomly partitioned into two sets, with 75% for the training
set and 25% for the test set. The optimal BP-ANN and SVM models
were chosen based on higher correlation coefficients and lower
errors in the training and test stages.

A BP learning algorithmwas proposed by Rumelhart et al., 1986
(Rumelhart et al., 1986). The BP-ANN is constructed on the basis of
multiple feed-forward networks composed of input, output and
hidden layers (Zhao et al., 2018). The general idea of BP-ANN is to
learn a certain number of samples after input and expected output
assigned. The input is sent to each neuron in the input layer and
after calculation in the hidden layer and output layer, each neuron
in the output layer receives the corresponding predicted concen-
tration of one element. If the error between the predicted con-
centration and the expected output does not meet the accuracy
requirement, the error is propagated from the output layer such
that the weight and threshold are adjusted until the accuracy
requirement is met. In this study, MATLAB R2013a was used to
establish the BP-ANN models.

The SVM models were established using MATLAB R2013a and
libsvm-3.21. SVM was initially applied to solve classification prob-
lems (Cortes and Vapnik, 1995), but following the introduction of
an ε-insensitive loss function nonlinear regression estimates
became possible. SVM adopts the structural risk minimization
principle and has a good generalization ability (Wang and Hu,
2015). In SVM, linear or nonlinear models are used to project
input vectors into a high-dimensional feature space such that
complex input-output relationships can be identified in a relatively
simple manner (Feng et al., 2020). Given the training set {(x1, y1),
(x2, y2), …, (xn, yn)}, the linear regression function established in
higher-dimensional space can be defined as shown in Eq. (1):

f ðxÞ¼w$fðxÞ þ b (1)

where f(x) is the predicted values, x the input vector in the sample
space, f(x) the input variables after kernel transformation, w the
weight and b the bias parameter, estimated by minimizing the
regularized risk function.

The optimization function and constraints are shown in Eq. (2):

min
1
2
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i¼1

�
xi þ x*i

�
(2)

and the constraint conditions in Eq. (3):

s:t:

8>><
>>:

f ðxiÞ � yi � εþ xi

yi � f ðxiÞ � εþ x*i

xi � 0; x*i � 0; i ¼ 1;2;/;n

(3)

where 1/2||w||2 is the regularization term and a measurement of

function flatness; xi and x*i are relaxation variables, with prediction
errors indicated by values > 0, otherwise both are equal to 0; C is
the penalty factor used to reduce the fitting error and ε is a pre-
scribed parameter. To optimize the functionality of the SVMmodel,
we focused on C and ε.

By introducing Lagrange multipliers and exploiting the opti-
mality constraints, the final nonlinear fitting function can be
expressed as shown in Eq. (4):

f ðxÞ¼
Xm

i¼1

ðdi � yiÞKðxi; xÞ þ b (4)

In general, polynomial function, sigmoidal function and radial
basis function are the most commonly used for SVMmodels (Wang
et al., 2015). In this study, the radial basis function was chosen
because it is effective and fast in the training process (Zhao et al.,
2016), which is defined as shown in Eq. (5):



Table 2
Seasonal variation in the volume-related concentrations of heavy metals in PM1 (ng/m3).

Spring Summer Autumn Winter Annual

As 2.184 ± 1.311 0.807 ± 0.449 1.159 ± 0.699 2.404 ± 1.123 1.706 ± 1.184
Cd 0.374 ± 0.302 0.117 ± 0.076 0.196 ± 0.134 0.632 ± 0.303 0.344 ± 0.305
Co 0.138 ± 0.096 0.044 ± 0.026 0.084 ± 0.053 0.177 ± 0.091 0.115 ± 0.090
Cr 5.936 ± 1.868 3.573 ± 0.816 6.146 ± 1.983 8.733 ± 3.171 6.132 ± 2.798
Cu 9.733 ± 5.764 6.486 ± 3.652 9.709 ± 10.72 25.33 ± 15.03 13.04 ± 12.09
Mn 12.41 ± 7.073 4.607 ± 1.923 10.47 ± 5.881 19.83 ± 9.328 12.07 ± 8.583
Ni 6.224 ± 2.029 3.616 ± 0.892 3.376 ± 1.956 7.756 ± 3.161 5.437 ± 2.799
Pb 15.66 ± 8.681 5.622 ± 2.187 10.36 ± 7.791 26.05 ± 11.32 14.91 ± 11.16
Ti 18.67 ± 13.83 7.596 ± 4.029 14.42 ± 5.370 14.60 ± 5.88 14.06 ± 9.444
Tl 0.159 ± 0.091 0.061 ± 0.039 0.104 ± 0.065 0.275 ± 0.107 0.155 ± 0.114
V 2.133 ± 1.199 1.315 ± 0.746 1.790 ± 1.632 2.323 ± 1.657 1.916 ± 1.362
Zn 45.75 ± 24.69 26.81 ± 14.71 38.78 ± 26.20 95.48 ± 42.93 52.84 ± 38.96
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Kðxi; xÞ¼ exp
n
� kx� xik

.
2s2

o
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where, di and yi are the introduced Lagrange multipliers and s2 is
the width of the Gaussian kernel.

2.5. Evaluation of model performance

The correlation coefficient (R), mean absolute error (MAE), root
mean squared error (MSE) and index of agreement (IA) were used
to evaluate the performances of the four models (described in the
SI). In general, R is used to measure the model’s fit performance;
MAE and MSE are indicators of the residual errors and are used to
evaluate the model’s predictive effectiveness; and IA is used to
measure the similarity between the modeled and the observed
tendencies, with values closer to 1 indicating greater similarity.

3. Results and discussion

3.1. Mass concentrations of PM1

The temporal trend in the PM1 concentration from December
2017 to November 2018 in Nanjing is shown in Fig. 1. The seasonal
variations in meteorological factors and other air pollutants are
summarized in Table S1. The annual average PM1 concentrationwas
26.31 mg/m3, below the annual standard limit of 35 mg/m3 set by the
National Ambient Air Quality Standard (NAAQS) in China (GB3095-
2012) for PM2.5 but much higher than the annual guideline value of
10 mg/m3 proposed by the WHO for PM2.5. The average PM1 con-
centration decreased from a high in winter of 43.56 mg/m3 (range:
13.48e73.40 mg/m3) to 25.98 mg/m3 in spring (9.72e55.46 mg/m3),
21.43 mg/m3 in autumn (9.84e38.38 mg/m3) and 12.07 mg/m3 in
summer (7.00e34.75 mg/m3). The higher concentration of PM1 in
winter was mainly due to the increased domestic heating and
relatively stable meteorological conditions characteristic of this
season, including low temperatures and light wind speeds, which
enhance the accumulation of air pollutants (Zhang et al., 2015). By
contrast, the lower PM1 concentrations during summer can be
attributed to the characteristic high temperatures, abundant rain
and relatively strong diffusion capacity (Li et al., 2018). The con-
centrations of SO2, NO2, CO and PM2.5 were also highest in winter
and lowest in summer, with the exception of O3, the concentration
of which was higher in summer and spring and lower in winter.

3.2. Heavy metal concentrations

The volume- and mass-based concentrations of heavy metals
during the four seasons are presented in Table 2 and Table S2,
respectively. Zn, Pb and Ti were abundant in PM1 whereas the
concentrations of Cd, Tl and Co were low. For most elements
described by volume-related concentrations, the seasonal decrease
followed the order winter > spring > autumn > summer, except Ti,
Cr and Ni. The Ti concentration was highest in spring (Table 2)
whereas the Cr concentration was higher in autumn than in spring,
and the Ni concentration was slightly higher in summer than in
autumn. Although metals expressed as volume-related concentra-
tions are commonly used to assess their pollution status, their
expression as a proportion of PMmass also provides information of
their toxicity. The seasonal variation of mass-related concentrations
of heavy metals were mainly related with their different pollution
sources. Among the metals described by mass-related concentra-
tions, As, Cd, Cu, Pb and Tl concentrations were highest in winter
whereas the concentrations of As, Cd, Co, Mn, Ni, Pb and Tl were
lowest in summer (Table S2).

As shown in Table S3, for heavy metals in PM1, the concentra-
tions recorded in Nanjing differed from those determined in other
cities because of differences in background values and pollution
levels (Caggiano et al., 2010; Huang et al., 2016; Li et al., 2019; Liu
et al., 2014; Mainka and Zajusz-Zubek, 2019; Onat et al., 2013;
Perrone et al., 2013; Talbi et al., 2018; Trippetta et al., 2016; Zajusz-
Zubek et al., 2017). In general, the concentrations of Co and V
determined in this study were lower than in all other studies, and
the concentrations of As and Cdwere lower in Nanjing than inmost
other cities. The concentrations of Cr, Cu, Mn, Ni, Pb, Ti, Tl and Zn
were in the middle range of the previously published values.

Anthropogenic influences were distinguished from the natural
background content of metals by calculating an enrichment factor
(EF) based on the normalization of a given metal with respect to a
reference element (see the SI). As shown in Fig. S1, the average EF
values of Co, Mn and V during the four seasonswere < 10, indicative
of a minimal enrichment of these metals and their having origi-
nated mainly from crustal sources (Tang and Han, 2017). Cr, Ni and
Tl were moderately enriched (10 < EF < 100), and As, Cd, Pb and Zn
greatly enriched (EF > 100) during all four seasons. Cu was
moderately enriched in spring and autumn (10 < EF < 100) but
greatly enriched (EF > 100) in summer and winter. The EF values of
nearly all of the studiedmetals were highest inwinter and lowest in
summer or autumn. The exception was Cu, whose EF was lowest in
spring. These anthropogenic elements in the study area mainly
derived from industrial emissions, coal combustion and traffic, etc
(Li et al., 2017).
3.3. Health risk posed by toxic metals in PM1

The health risk caused by direct exposure to airborne metals via
inhalation is shown in Table S4. The EC values of Mn, Ni and Pbwere
higher than those of the other tested metals. For noncarcinogens,
Mn and Ni had the highest HQ values in both children and adults.



Fig. 2. Predicted vs. observed concentrations of As (a, c) and Pb (b, d) at the training and test stages as simulated by the BP-ANN and SVM models. Atmospheric As and Pb levels
were simulated in (a) and (b) both using atmospheric pollutants, as well as in (c) and (d) both using meteorological factors and PM1 concentrations, respectively.
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The HQ values resulting from inhaled As, Cd, Co, Cr, Mn, Ni, Tl and V
in PM1 were all below the safe limit (1) for these two sub-
populations. The hazard index (HI) was 0.419, which was below the
safe limit (1) and thus indicated no obvious accumulative noncar-
cinogenic risks. Among the carcinogens, Cr had the highest risk
whereas the carcinogenic risks for the inhalation of As, Cd, Co, Ni,
and Pb were all less than the precautionary value set for children
and adults (10�4). The combined carcinogenic risk was 3.61 � 10�6

for children and 1.45 � 10�5 for adults, which in both cases was
lower than the precautionary value.

However, there were several uncertainties in the assessment
models, exposure metal toxicity data and exposure parameters of
the populations and thus in the health risk results. In addition,
other pathways of atmospheric toxic metal exposure were not
considered, such as the inadvertent ingestion of atmospheric par-
ticulates and dermal absorption via exposed skin. Finally, other
potentially toxic heavy metals, such as Hg, Sb, Cu and Zn, were not
considered in this study. Nonetheless, previous studies have
demonstrated the validity of this health risk assessment method as
an effective tool for evaluating the adverse health effects caused by
exposure to airborne heavymetals (Sun et al., 2014; Hsu et al., 2016;
Caggiano et al., 2019).
3.4. Correlations among atmospheric pollutants, meteorological
factors and metal concentrations

The Spearman’s correlation coefficients of atmospheric pollut-
ants, meteorological factors and the volume-related heavy metal
concentrations in PM1 are summarized in Tables S5 and S6. Nearly
all of the studied metals correlated significantly and positively with
each other (except Ti with Ni and V), indicating their common
origin (Table S5). The PM1 concentration correlated positively with
almost all of the heavy metals, as evidenced by correlation co-
efficients ranging from 0.467 for V to 0.885 for Tl. For most of the
tested metals, the correlations with temperature and wind speed
were significantly negative, and the correlations with atmospheric
pressure significantly positive (except Vwith temperature, Ni and V
with wind speed, and V with atmospheric pressure). Only Ti
correlated significantly with relative humidity. All of the metals
correlated significantly with atmospheric pollutants (SO2, NO2, CO
and PM2.5). The latter finding reflects the fact that heavy metals in
PM1 and atmospheric pollutants derive from similar sources,
including coal combustion, vehicle exhaust, biomass burning, and
road dust (Caggiano et al., 2019; Tao et al., 2014). SO2 and NO2 are
the gaseous precursors of secondary inorganic components of PM1,
and thus play important roles in determining its concentration as
well as that of PM1-bound heavy metals (Li et al., 2019). The



Fig. 3. Residuals plot of As (a, c) and Pb (b, d) at the training and test stages simulated by the BP-ANN and SVM models. Atmospheric As and Pb levels were simulated in (a) and (b)
both using atmospheric pollutants, as well as in (c) and (d) both using meteorological factors and PM1 concentrations, respectively.
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significant negative correlations of the studied metals with O3
(except Ti and V, which had no significant correlation with O3) can
be attributed to its being a ground-surface-derived secondary
pollutant whose formation involves complex photochemical re-
actions that differ from those of primary atmospheric pollutants (Li
and Cocker, 2018)

3.5. Simulation results

The volume-related concentrations of heavymetals in PM1were
simulated using BP-ANN and SVM models (Table 1). The results,
expressed as R, MAE and RMSE, are summarized in Tables S7eS10.
The predicted versus the observed values and the corresponding
residuals were plotted for As and Pb, two international routine
monitoring indicators (Figs. 2 and 3, respectively).

The training results determine the model performances of the
networks. For most elements, a higher training or test R value was
generally linked to lower MAE and RMSE values and to a higher IA
value. The training R and test R values of As, Cr, Cu, Mn, Pb, Tl and Zn
were all >0.8 in the BP-ANN models (models I and II), whereas the
training R values of As, Co, Pb, Tl and Zn were all >0.8 in the SVM
models (models III and IV). The training R and test R values of Co, Ti,
and V were <0.8 in the BP-ANN models, and those of Ni, Ti and
V < 0.8 in the SVM models. In general, all four models performed
better for Pb, Tl and Zn, based on training R and test R values
consistently >0.85, lower errors and higher IA values, whereas the
performances of all four models for Ti and V were relatively poor, as
the training R and test R values were <0.8. According to the EF
(Fig. S1), Pb and Zn were greatly enriched, Tl was moderately
enriched, and V and Ti originated mainly from crustal sources.
These results indicated strong relationships between the input
variables and the PM1-associated heavy metals that derived from
anthropogenic activities, such as industrial emissions and traffic
activities, but weaker relationships with metals that derived from
natural processes. In our previous study, better prediction results
for Ni, Al, V, Cd and As in size-fractionated PM were obtained in
both the BP-ANN and the SVMmodels using meteorological factors
and the PM concentrations as input parameters (Leng et al., 2017).
In another study from our group, better prediction results for Al, Fe,
Mn, Ni, and Ti were obtained in the SVM models when meteoro-
logical factors, PM2.5 concentrations and the magnetic properties of
PM2.5 were the input parameters (Li et al., 2017). Atmospheric V,
Mn and Ti derive from natural process whereas Ni, Cd, As are
mainly from anthropogenic sources. Thus, in our two previous
studies the different sources of the heavy metals likely accounted
for the complexity of the prediction results. However, according to
the present study, the modeling effects of particle-bound metals in
nonlinear models also closely depend on PM size.

A comparison of the BP-ANN and SVM models showed that the
training R values of Cr, Cu, Mn, Ni, Pb, Tl and Zn were higher in the
BP-ANN models than in the SVM models when atmospheric pol-
lutants were used as input variables. In addition, the training R
values of Cd, Cr, Cu, Mn, Ni, Pb, Ti and Tl were higher in the BP-ANN
models than in the SVMmodels when the input variables were PM1
and meteorological factors. In general, BP-ANN performed better
than SVM for Cr, Cu, Mn, Ni, Pb and Tl, and SVM better than BP-ANN



Fig. 4. (a) Comparison of the mean predicted element concentrations in PM1 from January to March 2019 and 2020, and the observed elemental concentrations in 2018. (b)
Comparison of the mean predicted element concentrations in PM1 in January, February and March 2020 (b).
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for As, Cd, Co and V. The advantages of ANN in non-linear systems,
especially for difficult to construct theoretical models, are well-
known (Gardner and Dorling, 1998), such that this approach has
been frequently used as a nonlinear tool, including in recent air
quality forecasting studies (Cabaneros et al., 2019). However, ANN
has a strong dependence on historical data and the results are likely
to be poor if few samples are available (Feng et al., 2011). SVM
avoids the overfitting and dimension disaster problems of BP-ANN
and thus has a greater potential to regress the input-output rela-
tionship during the training phase, resulting in a good performance
for new input data (Yeganeh et al., 2012). Although in our previous
studies the SVMmodels performed slightly better than the BP-ANN
models in the simulation of many heavymetals in PM2.5 (Leng et al.,
2017), in the present study there were no obvious differences in
their simulation performances.

A comparison of the models’ performances using different input
variables showed that for As, Cd, Cu, Mn, Ni, Pb and Zn the training
R values were higher when the input variables were atmospheric
pollutants rather than PM1 andmeteorological factors. This was the
case for both the BP-ANN and the SVM models. By contrast, for Cr,
Ti, and V, the training R values were higher when the input vari-
ables were PM1 andmeteorological factors rather than atmospheric
pollutants, again for both the BP-ANN and the SVM models. In
either case, there was no dependency on the linear correlation
between a target element and the input variables, because for a
target element high correlation coefficients with the input variables
did not always correspond to high training R values (Table S6), thus
providing further evidence of the strong nonlinear relationships
between the metal concentrations and the input variables. The EF
values of As, Cd, Cu, Ni, Pb and Zn were much higher than those of
Cr and V, indicating that atmospheric pollutants are good indicators
in predictions of the anthropogenic elements in PM1 using
nonlinear models.
3.6. Prediction of metal concentrations in PM1 from Nanjing during
2019e2020

Following the successful establishment of the simulation
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models of heavy metals in PM1, the metal concentrations in PM1
from Nanjing between January 1, 2019 and March 31, 2020 were
predicted using the fully trained SVMmodel and, as input variables,
the daily concentrations of five atmospheric pollutants (SO2, NO2,
CO, O3 and PM2.5) as recorded by the Nanjing Environmental Pro-
tection Bureau. The results are shown in Tables S11 and S12 and in
Fig. 4.

The highest predicted concentration in PM1 was that of Zn,
followed by Pb, Mn and Ti, and the lowest concentrations were
those of Co, Tl, and Cd. These findings are consistent with the
observed results for 2018. With the exceptions of Cr, Cu, Ti, V and
Zn, the mean annual heavy metal concentrations predicted in 2019
were higher than the observed concentrations in 2018. This was the
case for As, Cd, Co, Mn, Ni, Pb and Tl (Table S11). Seasonal decreases
in the concentrations of Cd, Cr, Cu, Ni, Pb, Tl, V and Zn were pre-
dicted along the order: winter > spring > autumn > summer. For
these elements, pollutionwas heaviest in January or December and
lightest in August or July (Table S12). By contrast, the seasonal
decreases in the concentrations of As and Mn followed the pattern
spring > winter > autumn > summer, and those of Co and Ti the
pattern spring > autumn > summer > winter.

The COVID-19 pandemic struck China at the beginning of 2020
(Flahault, 2020). To limit the spread of the disease, China imple-
mented a series of nationwide countermeasures that went into
effect from the end of January 2020 until the beginning of March
2020, including traffic control, the shutdown of businesses and
quarantine at home (Okyere et al., 2020). As shown in Fig. S2,
except O3, the mean concentrations of other atmospheric pollut-
ants monitored by the Nanjing Environmental Protection Bureau
from January to March 2020 were all lower than those measured
from January to March of 2018 and 2019. According to the fully
trained SVM models, the mean concentrations of most elements,
except Co and Tl, predicted for the period during the COVID-19
pandemic were also lower than either the predicted concentra-
tions from January to March 2019 or the observed concentrations
from January to March 2018 (Fig. 4(a)). Furthermore, a comparison
of the mean element concentrations for the first three months of
2020 showed that the concentrations of nearly all the studied el-
ements except Co were lowest in February and then increased to
some extent in March (Fig. 4(b)). This result is consistent with the
implementation period of the nationwide countermeasures, which
had significant effects on the emissions of air pollutants.

4. Conclusions

In this study, the heavy metals in PM1 from Nanjing, China were
investigated. During 2018, the annual average PM1 concentration
was 26.31 mg/m3 and most element concentrations followed a
seasonal pattern: winter > spring > autumn > summer. As, Cd, Pb
and Zn were greatly enriched, whereas Co, Mn and V originated
mainly from crustal sources. There were no accumulative noncar-
cinogenic or carcinogenic risks resulting from inhalation of the
toxic metals in PM1. BP-ANN and SVM models of the heavy metals
in PM1 performed well for Pb, Tl and Zn but relatively poorly for Ti
and V. The concentrations of many metals were better simulated
when the input variables were atmospheric pollutants rather than
PM1 and meteorological factors, both for the BP-ANN and the SVM
models. PM1-bound heavy metal concentrations in 2019 were
predicted by the fully trainedmodels and their concentrations were
shown to be higher in winter and lower in summer. During the
COVID-19 pandemic from January to March 2020, the predicted
concentrations of most metals followed a trend consistent with the
implementation of emergency countermeasures in China. These
results demonstrated the validity of the simulation models to
predict heavy metals in PM1.
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